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Abstract

A fluid layer subjected to an internal heating source and cooled from above and below is studied. Using linear
stability analysis and numerical simulation it is shown that the critical Rayleigh number related to the bifurcation from
the motionless conductive state to a convective state can be increased by controlling the heating power. A feedback-
control strategy using the deviation of the real fluid temperature from that of the associated conductive state is applied
for this purpose. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Active control of fluid dynamics and heat transfer
phenomena has a strategic position in current research.
The aim, in most of these activities, is to control the drag
on bodies, to increase or decrease mixing, or to control
heat transfer between a domain and its environment.

In general, active flow control can be seen as im-
posing a pseudo-stable state (as opposed to the naturally
stable state) on a system by perturbing its energetic
(mechanical or thermal) state in time and/or space. The
perturbation is imposed by importing energy from
the exterior, conditioned by information extracted from
the fluid domain. The range of control variables influ-
encing the flow or heat transfer is very large and so is the
choice of control strategies.

One of the most common techniques of controlling
fluid flows is by mass injection on the wall. Many nu-
merical investigations are reported in the literature.
Joslin et al. [1,2] studied wave growth control by suction
and blowing in a fully developed channel flow in order
to keep the drag force at a given value. Their feedback
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rule searches for an optimal control by minimizing a
cost function depending on the value of the wall shear
stress measured in one or two positions and also normal-
to-wall velocity generated by actuators.

Another technique for active control of flow uses
wall deformation or wall movement. Choi et al. [3] used
this technique in order to reduce wall drag in a turbu-
lent flow. They used the vibration normal to the flow of
the upper wall of a channel to control the flow struc-
ture.

Heat transfer from a wall to the flow can also be used
for flow control. The transition to turbulence in a
boundary layer is among the various phenomena that
can be controlled by heat transport from the wall.
Computational studies by Kral et al. [4] showed the real
efficacy of this technique. Active control of Rayleigh—
Benard thermoconvective instability is another example
of this type. Numerical and theoretical work by Singer
et al. [S] and Tang et al. [6] have shown that by dividing
the lower boundary into strips and modulating the
boundary temperature as a function of the temperature
of sensors located in selected positions in the fluid layer,
it is possible to retard the threshold of instability in the
cavity. Experimental results of Howle [7] using a control
strategy similar to that of Tang et al. showed an almost
total elimination of convective motion. Howle’s [7]
configuration is close to that studied here, except that in
the present work a source of volume heat dissipation is
introduced into the fluid.
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Nomenclature

a wave number

ay wave number in 7 direction

a, wave number in j direction

Cy thermal capacity (J kg™' °C™")

d spacing between the two parallel plates (m)

E electric field magnitude (V m™")

g acceleration of gravity (m s2)

G dimensionless control coefficient

Gy control coefficient (s7!)

i7 K space directions

q specific heating power (°C s™')

g constant part of controlled specific heating
power (°C s7")

7 fluctuating part of controlled specific heat-
ing power (°C s™!)

s temporal growth rate (s7!)

Ty wall temperature (°C)

u, v, w velocity components (m s~!)

i velocity vector
x, ¥, z space coordinates (m)
z z-position where the data are obtained (m)

Greek symbols

o thermal expansion coefficient (°C™")

0 temperature (°C)

Ocond conductive temperature (°C)

Ocond., conductive temperature at z = z; (°C)

0., real convective temperature at z = z; (°C)
Do conductive temperature gradient (°C m™")
K thermal diffusivity (m? s7!)

v kinematic viscosity (m? s7!)

p density (kg m™)

p density at 6 =0 (kg m™)

o electric conductivity (@' m™")

T shear stress tensor

Nondimensional numbers

Ra Rayleigh number

Pr Prandtl number

This paper concerns the active control of thermo-
convective instability in a fluid cavity subjected to uni-
formly distributed volume heating generated by direct
resistance heating. Unlike the classical Rayleigh-Benard
stability of a cavity with differentially heated horizontal
walls, the present configuration has received little at-
tention in the past years.

A fluid layer separating two parallel horizontal
plates is considered (Fig. 1(a)). The fluid is subject to
volume heating. Heating can be generated by passing
an electric current (electric field magnitude E) through
a conducting fluid (electric conductivity o) [8,9]: the
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X
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(b)

Fig. 1. (a) Fluid layer and sign convention for the theoretical
study, (b) cavity and sign convention for the numerical ap-
proach.

electric energy dissipated in the fluid by the Joule effect
(oE?) is then transformed to heat. Unlike dielectric
fluids, in conducting fluids the effect of the electric force
is negligible compared to that of buoyancy. The tem-
perature of the upper and the lower plates, considered
the cold temperature, is kept constant, and the lateral
walls are thermally insulated. The temperature profile
in the fluid layer due to volume heat generation is
parabolic with the maximum in the center. Thus, the
lower half of the fluid layer is stable while the upper
half is susceptible to thermoconvective instability if the
heating power exceeds a critical value. This work con-
cerns the active control of the stability in the upper half
of the fluid layer and is aimed at controlling the in-
stability threshold by keeping the conductive state
above the critical heating power. The conductive state
is characterized by a motionless fluid layer in which the
temperature has a parabolic profile between the two
parallel plates.

The governing equation of the conductive state is the
heat equation:

q

AO = — e (1)
Here ¢ = 6E*/pC, is the specific heating power, where
oE? is the global heating power (W m™) applied to
the system and 0 is the difference between the fluid
temperature and the wall temperature 7;. The sym-
metry of the lateral boundary conditions implies a
one-dimensional heat conduction phenomenon across
the fluid layer with the analytic solution for temper-
ature



T. Marimbordes et al. | International Journal of Heat and Mass Transfer 45 (2002) 667-678 669

0==—-z(d —z). (2)

From now on this state, the conductive state, is used as
the reference temperature.

Beyond a critical heating power, the upper half of the
fluid layer becomes unstable and a cellular motion due
to convection begins. The temperature distribution
across the fluid layer then deviates from the parabolic
distribution. The aim here is to find heating power
conditions that eliminate the convective motion so that
the parabolic temperature distribution is reestablished
across the fluid layer.

This paper is organized as follows. In Section 2 a
linear stability analysis is carried out to establish the
stability limits of the conductive state. This analysis is
similar to that carried out by Roberts [10] and Debler
[11] on a cavity subjected to internal heating but with
upper and lower walls at different temperatures. In
Section 3, after choosing a control strategy, the linear
stability of the controlled system is developed for an
unbounded layer (Fig. 1(a)). Numerical calculations
are reported in Section 4. Our algorithm is first tested
by verifying the instability threshold for the uncon-
trolled system. The efficacy of the control strategy is
then examined by numerical simulation of active
control of convection in a two-dimensional cavity
(Fig. 1(b)).

2. Linear stability analysis: uncontrolled cavity
2.1. Problem formulation

The analysis starts with the equation of energy in its
general form

- % (50) +4 (3)
dt

with df/ds the total derivative of 0. It is assumed that
the thermophysical properties of the fluid are constant in
the range of temperatures studied, except for the density
in the volume force term

p=p(1— ). 4)

The momentum and continuity equations with the
Boussinesq approximation can be written as

i o (p . V.t
V- (p7) = 0. (6)

The temperature and velocity boundary conditions are:

0=0  atz=0.d,
F=F—0 atz=0,d. (7)

2.2. Stability limits of the uncontrolled system

The velocity, temperature and pressure in the system
of Egs. (3), (5), and (6) are perturbed by infinitesimal
disturbances:

0(t7x7y,z) = @(x7y7z) + 0'(t7x,y,z),
ﬁ(lm)&z) = V(xvyvz) + ﬁ'(t,x,y,z),
p(t,x,y,z) = P(x,p,z) + p'(t,x,9,2).

The (1) equations for disturbances are obtained by
subtracting the equations of the nonperturbed state and
are then linearized. The variables are nondimensional-
ized by using the specific heating power, the thermal
diffusivity and the characteristic length of the cavity:
c_wd

w K’ *ﬁ7

K . Z *_pdz

7d_27 Z:d’ pfﬁ

*

The dimensionless system of equations then follows:
Gl 00"

Ix :A* /%
a4 ®)
dv* = I %7 * =k

where Ra and Pr are the Rayleigh and Prandtl numbers
defined as
5
_oggd v

Ra=——, .
K2V K

For the sake of convenience (') and (*) are hereafter
omitted.

The curl operator is applied two times to equation (9)
which is projected in the k direction

d
aAw:RaPrAIH—i-PrAZW, (10)
where
o 0 0
M=—+—, D=
! ax_‘—@y7 0z

w and 0 are now developed in normal modes as

0 = T(z)e™*ae’ and w = W(z)ell@or)es,
Introducing a = \/aﬁTaf neutral stability conditions
imply:

DOW = (D* — )T, (11)
(D* — &)W = d’RaT, (12)
where DO is the gradient of the temperature profile

corresponding to the nonperturbed state:
DO = (1/2) —z. We thus have for (11):

(%—z)W:(Dz—az)T (13)
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T(z) is then developed in Fourier series
(2) = ZA,, sin(nmnz) (14)
n=1
and is introduced into (12) and solved for W (z)

W(z) = a*Ra ZA,, {B,, cosh(az) + C, sinh(az)
n=1
sin(nnz)

+ D,zsinh(az) + E,zcosh(az) + 2

(15)
with N, = (nm)’ + a2
The coefficients 4,,, B,, C,, D, and E, are determined
from the boundary conditions on velocity: W = DW =0
at z =0, z = 1, this gives:
B, =0, (16)
_ at (1) sinh(a) mm. (17)
sinh“(a) —a* N;
acosh(a) —sinh(a) nm cosh(a)

br=G—"qh@ TN sinh(a)’ (18)

E, (ac,, +N2> (19)

T and W are then substituted into (13) to yield

00

ZA,,(an) sin(nnz)

n=1
— &Ra ;An {C,, (% — z) sinh(az)
1 . 1
+ D”Z(E — z) sinh(az) + E"Z(E - z) cosh(az)

1 sin(nnz)
-+ (E — Z) an :| . (20)
This expression, as well as the values of 4,, B,, C,, D,
and E,, are different from those obtained by Debler [11],
though a similar procedure has been used here.

The equality (20) should be satisfied for 4, # 0 Vn.
For this, we have used the conventional closure for
equations containing variables expressed in Fourier
series: by multiplying (20) by sin(mnz) and then inte-
grating between 0 and 1

/01 (=N,) sin(nnz) sin(mnz) dz

e[ (L) cosita - 5
+ z(% - z) (Dn sinh(az) + E, cosh(az))}
x sin(mnz) dz. (21)

(21) must be satisfied Vn, m in order for 4, # 0. This is
equivalent to

det |(21)] = 0. (22)
From this equality we deduce a law of the type
Ra = f(a), and thus (22) is reduced to a second-order
system of equations in m and n. For the classical Ray-
leigh-Bénard problem the first-order approximation is
relatively precise, in the specific case of volume heat
generation. Roberts [10] has shown that for the stability
analysis of the conductive state one needs to study just
the two first steady modes.

A-4+1/1 1/2

g — 2
g 2/1 S 4+2/2 (23)

with

o [ (1) (s )
;
(mm

( - )(D sinh(az) + E, cosh(az))]
i (24)

The solution of & = 0 is the curve of marginal stability
(Fig. 2), yielding a critical Rayleigh number
Ra. = 37230 for a critical wave number a. = 4. The
value of the critical wave number is similar to those
found in linear stability analysis of Rayleigh—Benard
thermoconvective instability; however, the value of the
critical Rayleigh number is much higher than in the
classical Rayleigh-Benard configuration, where it is
around 1700. This discrepancy is due to the fact that the
Rayleigh number here is based on a volume power
density, whereas it is usually based on the characteristic
temperature difference in the problem. However, com-
parison can be made with a classical Rayleigh—Benard
configuration [12,13] corresponding to the upper half of
the cavity (d/2 deep) with upper rigid boundary and

X sin(m

150000

100000 -

Rayleigh number

50000

1 2 3 4 5 6 7 8
wave number a

Fig. 2. Marginal stability curve for the uncontrolled system.
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lower free boundary where the associated critical Ray-
leigh number is 1101. In this case the temperature at the
upper boundary is the cold temperature and the tem-
perature at the lower boundary is equal to the maximum
value of the parabolic temperature profile, gd?/8x. The
main difference, however, between these two cases is that
here we have a semi-parabolic conductive temperature
distribution within the fluid layer, whereas a linear
temperature profile is usually considered in the classical
Rayleigh-Beénard convection. If we write the classical
Rayleigh number (i.e., in terms of temperature differ-
ence) associated to the critical state of the present con-
figuration:
agATd}

Raclassical = s
VK

; 3
qcriticald

ith AT =
wit o

d
and d =5

Ra kv

QCrilical = Olgds P
which gives rise to a critical value for Rayleigh number
as

Ragassical = % = 581.75. (25)
The conclusion is that, for the same temperature differ-
ence between the boundary planes the parabolic tem-
perature distribution is less stable than the linear one,
since the z-component of the temperature gradient is not
constant. In the pure Rayleigh-Bénard configuration the
temperature gradient is constant and equal to geiticaid /4%
everywhere in the fluid layer, while in the present con-
figuration the temperature gradient varies from 0 (center
of the cavity) to Guiticaid/2k (on the wall). Therefore the
maximun gradient value in the present case is twice
larger than that of the pure Rayleigh-Bénard con-
figuration. This explains the ratio ~ 0.5 between the
two critical Rayleigh numbers.

3. Linear stability analysis: controlled cavity

By introducing a control loop, we aim to retard the
marginal instability, i.e., to push the critical Rayleigh
number to higher values. The control strategy used here
is based on proportional feedback, a kind of control
already used by Tang et al. [6]. The choice of the con-
trolled variable is guided by our goal. We aim at ob-
taining a conductive temperature distribution in the fluid
layer for Ra values above the Ra. of the uncontrolled
system. Therefore, the difference between the real tem-
perature (0 convective) and the temperature in the pure
conductive case (O.onq) 1s tracked (in time) at a given z-
position inside the fluid layer. The action variable is the
volume heating power dissipated in the fluid. The

volume heating thus applied on the fluid layer is con-
ditioned on the value of 0 — 0.,,4 at a given z-position z;.
Ocona 1s known for any z;, since it is determined by the
analytical solution of the conductive problem (2). The
optimal position for data measurement is determined
from the linear stability analysis.

3.1. Stability limits of the controlled system

The equations governing this system are the same as
those for the uncontrolled case (Section 2.2). The con-
trol strategy is integrated into the expression of the
source term ¢, which now has two parts. The first is a
constant and identical to ¢ in Section 2.2: g, = oE*/pC,,.
The second term corresponds to the modulation term of
¢ determined by the control loop: ¢, = G4(0,, — Ocond, ),
where z; designates the z-position where data is extracted
and G, is the proportional gain of control whose di-
mension is [s™!]. The source term in the equation of
energy is then expressed as:

oE?

q:__Gd(QZi -

pCp Hcond:‘ ) (26)

Mathematically this expression of the source term can be
negative. In this theoretical part of the study the con-
ductive state is perturbed by infinitesimal disturbances
so that 0., — Ocona,, < Ocona,,- The aim of this part is to
find the new stability limits of the conductive state when
the control module is activated. Therefore for a given
value of ¢ we will choose the smallest value of G, for
which the configuration remains subcritical. Conse-
quently in the case of infinitesimal perturbances ¢, < ¢
which leads to ¢ > 0. The mathematical procedure for
the stability analysis is similar to that developed in
Section 2.2, and the shifting of the stability curve as a
function of G, and z; is sought. The system of equations
to solve is:

do - =

a = V(KVO) + q] - Gd(Oz,- - 0cond:1 )7
@zfﬁ(nggz) facgé)l_c'Jrg, 27)
dt P p

V.(pB) =0

They are perturbed by infinitesimal perturbations and
after linearization become:

ol ,00 y y
E—O— W= kA0 — G40,
(28)
d_v — —6(@) — ocg(?’l?—l— VAT .
dt p

They are then nondimensionalized by the same variables
as for the uncontrolled cavity to yield:
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% I %@* — 40 — GGZ’
dv™ j (29)

e RaPrO"k + Pra't".
Since 4,60, = 4,0 = 0, the system of equations to solve
reduces to:

DOW = (D> —d*)T — GT(z),

2 2\2 2 (30)
(D" —a’)W =a’RaT.

The second equation of (30) is similar to (12). By de-
veloping 7'(z) in Fourier series one gets the same ex-
pression for W (z) as in the uncontrolled system, as well
as for the value of the coefficients B,, C,, D, and E,. By
introducing 7'(z) and W(z) in the first equation of system
(30), the dispersion relation Ra = f(a) is obtained in
which the value of G and the position z; at which the
data are extracted appear as control parameters

00

> 4,(=N,) sin(nmz)

n=1
— &*Ra ;An {C,, (% - z) sinh(az)
1 . 1
+ Dnz(z - z) sinh(az) + E”Z(E - z) cosh(az)

1 i o
n (5 - z> %} -G , sin(nnz).  (31)

In order to obtain nontrivial solutions for any 4n # 0
Vn, it is required that

/0.1 (=N,) sin(nnz) sin(mnz) dz

= azRa/O] [(% - z) (Cn sinh(az) + %>
+ z(% — z) (Dﬂ sinh(az)

+E, cosh(az)) sin(mnz)} dz.
+ /‘1 G'sin(nmnzi) sin(mnz) dz. (32)
Jo

This is equivalent to

: <%+25in(nz,)6>+1/1 1/2

a’Ra i

9 = 2/1 4 2Gsin(2nz) Ny 2/2| (33)

na’Ra 2a’Ra

The value of m/n is the same as in the uncontrolled
system (24).

The uncontrolled system will be recovered for
G = 0. Computations have been carried out for four
values of z; and different values of G. Figs. 3 and 4
show marginal stability curves for z; = 3/4 and 1/2 and

200000

150000 [

100000 +

critical Rayleigh number

50000 -

wave number a

Fig. 3. Marginal stability curve with control at z; = 3/4 and for
different dimensionless feedback gains G.

200000

150000

100000 [

critical Rayleigh number

50000 -

wave number a

Fig. 4. Marginal stability curve with control at z; = 1/2 and for
different dimensionless feedback gains G.

different values of G. Notice that whatever the positive
gain value and the z-position of the temperature probe,
the introduction of the control loop stabilizes the sys-
tem. No matter which z; is chosen, the larger the gain,
the higher the value of critical Rayleigh number. It can
also be noticed that as the threshold of instability in-
creases, the critical wave number a. moves towards
higher values. For constant G it is more effective to
base the control on the data location z; = 3/4 than on
another z-position, as can be seen in Fig. 5. This can be
intuitively linked to the fact that the center of the cel-
lular structures of the convective movement is located
at z = 3/4, which is the midline of the upper half of the
cavity. In the above computation it is assumed that the
principle of the exchange of stability is valid (time-in-
dependent perturbations). At high Rayleigh numbers
this hypothesis can be violated, and therefore the sta-
bility of the system under time-dependent perturbations
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4.0e+06 T T T

E5—+H82z=0.5
*—xz=11/16
c—02=0.75
6—%2-13/16

3.0e+06

2.0e+06

critical Rayleigh number

1.0e+06 -

0.0e+00 = ' ' .
0.0 2000.0 4000.0 6000.0

feedback gain G

Fig. 5. Evolution of Ra. as a function of dimensionless feed-
back gain G for four z; values.

must be studied in order to define the domain of va-
lidity of the curves of Fig. 5.

4. Numerical simulations
4.1. General conditions

The Navier—Stokes, continuity and energy equations
were solved using the dimensional finite volume nu-
merical code ESTET [14]. The numerical scheme used is
SIMPLEC and convective terms are estimated by a
QUICK-UPWIND scheme. The theoretical analysis in
Section 3 was applied to a laterally unbounded fluid
layer. However, the code used here requires finite lateral
boundary conditions. In order to approach the
theoretical case, a large-aspect-ratio (10:1) thin fluid
layer was considered in the computations (Fig. 1(b)). In
future experimentations and three-dimensional simula-
tions the j-direction will be dedicated to the shorter
horizontal direction which will be the direction of ori-
entation of the structures that will appear. Thus, we
restrict attention to a two-dimensional fluid layer in the
@, l?) plane with symmetry conditions imposed in the }
direction. This type of condition implies conservation of
vorticity in j direction. The grid size in the (7, 1?) Cross-
section is 151 x 63. It is refined on the vicinity of the
upper, lower and lateral walls and the mesh size is in-
creased progressively by a ratio of 4/3 towards the
center of the cavity. The working fluid is water
(Pr=1.48).

The temperature and velocity boundary conditions
are:

0=0, z=0,1
%:0, x=-5,5,
(34)
t=0, z=0,1,
t=0, z=-5,5.

All the results will be shown in dimensionless form (as in
Section 2) and (*) will be omitted.

4.2. Validation of the numerical code

The validity of the code is verified by searching the
value of the critical Rayleigh number of the first bifur-
cation from the conductive state to the convective state.
The heating power is adjusted so that the Rayleigh
number is around its critical value. We want to verify
that below this value the fluid remains motionless and
above it thermoconvective motion sets in.

4.2.1. Subcritical state

The heating power is adjusted so that the associated
Rayleigh number becomes subcritical. The Rayleigh
number for the specific case presented here is Ra =
37000 and the evolution of the vertical component of
the velocity at z = 0.718 is shown in Fig. 6. The velocity
perturbations oscillate around zero mean velocity and
are damped at longer time intervals. The amplitude of
oscillations remains infinitesimal, at the limit of the
precision of the numerical code or the machine. This is
confirmed by the time evolution of the instantaneous
temperature at z = 0.718 during the transitory phase as
shown in Fig. 7: the transitory phase evolves exponen-
tially, as is a characteristic of a conductive regime. It is
to notice that the temperature converges 10 times more
rapidly then the vertical component of the velocity.
Fig. 8 plots the nondimensional value of the vertical
velocity component as a function of x for z = 3/4 at the
last time step calculated (i.e., when the thermal steady-
state is reached). This value is zero everywhere except in
the vicinity of the lateral walls and even in this region it
is on the order of 6 x 1073, this solution is time invariant
there is no propagation of the lateral perturbation in the
heart of the cavity. Finally, the comparison of the

0.0020 T T T T

0.0010 [ 1

2 0.0000

0.0010 [ 1

0.0020 L L L L
.0

t

Fig. 6. Time evolution of the vertical component of velocity at
z=0.718, x = 0, Ra = 37000.
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t

Fig. 7. Time evolution of temperature at z=0.718, x =0,
Ra = 37000.

0.015 T T T T

0.010 [ 1

0.005

= 0.000

—0.005

-0.010 - 4

I
5.0 -3.0 -1.0 1.0 3.0 5.0

Fig. 8. Distribution of the vertical component of velocity as a
function of x at z=3/4, t =9.1 , Ra = 37000.

computed temperature profile and the theoretical para-
bolic conductive profile (in Fig. 9) at the last time step
shows that the system is definitively in a conductive
state.

4.2.2. Weakly supercritical state

Fig. 10 represents the time evolution of the vertical
velocity component for Ra = 40000 at z = 0.718, x = 0.
Notice that the velocity has stabilized at a nonzero
value, which implies that the flow solution is steady and
that the stability threshold has been reached. This con-
clusion is confirmed by the temperature profile as a
function of z (Fig. 11) and the velocity profile as a
function of x (Fig. 12) at the last time step simulated
(i.e., when both thermal and dynamic steady-states are
reached). The temperature profile nevertheless remains
similar to the conductive temperature profile. This can

numerical temperature
o theoretical conductive temperature

z

Fig. 9. Temperature profile across the cavity at x = 0,
Ra = 37000.

~
I

bt

—

0.002 T T T

0.000 [ 1

0.002 4

0.004 1

0.006 - 1

0.008 L . .
0.0 5.0 10.0 15.0 20.0

t

Fig. 10. Time evolution of the vertical component of velocity at
z=0.718, x = 0, Ra = 40000.

o theoretical conductive temperature
numerical temperature

Fig. 11. Temperature profile across the cavity at x =0, t = 15,
Ra = 40000.
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0.020 T T T T

0.010

z 0.000

0.010

0.020 ; ; t t
5.0 3.0 1.0 1.0 3.0 5.0

Fig. 12. Distribution of the vertical component of the velocity
as a function of x for z=3/4, t = 15, Ra = 40000.

0.0 2.0 4.0 6.0 8.0

0.00 L L
0.0 2.0 4.0 6.0

t

Fig. 13. Time evolution of the temperature at z = 0.718, x = 0,
Ra = 40000.

be readily explained from energy considerations: at the
beginning the system dissipates by conduction the en-
ergy received (see Fig. 13 for the temporal evolution of
the temperature), but when the conduction process can
no longer dissipate this energy completely, the extra
thermal energy is converted into mechanical energy, in
the present case at ¢~ 1. At this point, the Rayleigh
number is close to its critical value and the thermal en-
ergy converted to mechanical energy is weak, so that the
temperature profile deviates only slightly from that of
conductive state. Fig. 14 plots, for the cavity, the iso-

vorticity lines (left) and the isocontour lines (right) of the
difference between the computed temperature field and
the theoretical conductive temperature at Ra = 40000.
This appears as a weak but cellularly organized and
time-independent movement. The temperature isocon-
tour lines plotted on the right-hand side of the figure
show that the temperature profile is modified through-
out the cavity but at different rates. In the bottom half,
the isocontour lines remain parallel showing that the
energy state has changed but energy is still being dissi-
pated by conduction. In the upper half of the cavity, the
waviness of the isocontour lines shows the thermal sig-
nature of the convective structures. From the above
verification, it can be concluded that the numerical code
is precise enough to allow prediction of the flow struc-
ture and evaluation of the control strategy.

4.3. Numerical simulation of the control loop

In this section, we discuss the implementation of the
control strategy developed in Section 3 in the numerical
procedure. The operational mode chosen is to start the
computation without control and let the flow regime be
established. Then the solution [0(x,y,z, &), U(x,y,z, %),
P(x,y,2,1))] obtained is chosen as the initial conditions
for the computations with control strategy. The control
loop may first bring the system near the reference state
and then, will counter the convective starts and therefore
make the system oscillate around the conductive state.
The amplitude of oscillations is connected to the accu-
racy of the loop. For each time step we define the new
power that must be injected in the system for each fluid
column, i.e., within each mesh column. The numerical
code has already proven able to handle time- and space-
dependent boundary conditions defined by data ex-
tracted from the previous time step [15]. The feedback
loop is

qz(x7y7z7t+ 1) = G<0(x’y’%7t) - OCDnd (x7y7§7t)>'

(35)

Here, before the activation of the control loop the dif-
ference between the convective state and its associated
conductive state is no more infinitesimal. It is evident
that the system cannot be cooled in its volume, we can
only stop heating. To avoid this a filter is fixed down-
stream of the control loop:

Fig. 14. Isocontour lines of vorticity (left) and isocontour lines of difference between the calculated temperature profile and theoretical

conductive one (right), = 15, Ra = 40000.
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If qZ < qu then q = 6'11 - (.]27 (36)
If ¢ > ¢, then ¢ =0.

The filter history shows that the filter is only necessary
for the three first steps of action. This definition of the
loop shows that its efficiency will be highly connected to
the precision of temperature measurements: the more
precisely we know the temperature in the fluid, the
smaller is the difference between controlled state and the
theoretical conductive state. In the numerical simula-
tions carried out for confirmation of the efficiency of the
loop, the measurement error is not taken into account.
The loop was tested on two different configurations. In
the first the strategy was applied to the convective case
to check the value of Ra. (Ra = 40000). The peculiarity
of this case is its steadiness. Then the strategy was tested
on a case beyond the threshold of a new bifurcation,
when as a result natural convection characterized by a
time-dependent velocity field is established.

4.3.1. Computations for small Rayleigh number

The Rayleigh number for this case is Ra = 40000 and
the corresponding regime, as shown before, is convective
in an uncontrolled configuration. However, as can be
seen in Fig. 3, the regime is situated in the stable zone if
a feedback gain of G = 30 is applied. We start to apply
the control at # = 15. Fig. 15 shows that a significant
decrease in the vertical component of the velocity at
z=0.718 is achieved 0.2 time units after the control is
applied. A closer look at the axial profile of the vertical
velocity (Fig. 16) shows that some vertical movements of
the fluid particles still exist in the lateral sides of the
cavity; this is attributed to wall effects. The corre-
sponding temperature profile across the cavity span
(Fig. 17), collapses on the conductive profile, as is the
aim of the control strategy; the purpose was to re-
stabilize a conductive temperature profile.
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Fig. 15. Time evolution of the vertical velocity component at
z=0.718, x =0, Ra =40000. Control strategy is applied at
t =15 (G = 30).
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Fig. 16. Distribution of the vertical component of the velocity
as a function of x for controlled and uncontrolled systems,
z=13/4, Ra = 40000, G = 30.
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Fig. 17. Temperature across the cavity at x = 0 for controlled
system, Ra = 40000, G = 30.

4.3.2. Computations for a high Rayleigh number
Computations are repeated for Ra = 2.4 x 10°. In
this case the gain of the control loop is G = 370 (Fig. 5).
The control strategy is set on at f, = 7.41. At this time
step the convective state is fully established. Fig. 18(a)
shows the isocontour lines of velocity (left) and tem-
perature (right). Convective cells are generated in the
upper half of the cavity by thermoconvective instability
and the vorticity is diffused to some extent into the lower
half of the cavity. The isocontour lines of the tempera-
ture also show a cellular structure. Fig. 18(b) shows the
same domain once the control is applied. On the left side
of the figure the fluid domain is motionless: the con-
vective cells have disappeared. On the right the isocon-
tour lines of temperature are parallel horizontal lines,
indicating a pure conductive state. These results show
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(b)

Fig. 18. Isocontour lines of vorticity (left) and temperature (right): (a) uncontrolled case (¢t = 7.4); (b) controlled case (G = 370,

{=7.6), Ra=2.4x 10°.

clearly that through the active control, the instability
threshold has been pushed up in such a way that the
state of the system becomes subcritical and hence a
conductive state is re-established.

Re-stabilization of the system is also apparent in
Fig. 19, where the transverse profile of the temperature
is plotted at x = 0.18 for the controlled and uncontrolled
cases. In the uncontrolled case the maximum value of
temperature has moved towards the upper wall as a
result of mixing due to the convective cells superposed
on the conductive mode of heat transfer. The axial (x)
distribution of the transverse component of velocity w is
shown in Fig. 20 for both the controlled and uncon-
trolled cases. In the latter case the nondimensional ve-
locity varies between +20 and —55, whereas once the
control strategy is applied the transverse velocity is
completely suppressed. This shows that the system has
been re-stabilized and pure conductive heat transfer re-
stored. The temporal evolution of the transverse velocity
monitored at observation position z = 0.718 (Fig. 21)
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Fig. 19. Temperature distribution across the cavity at x = 0 for
controlled (G = 370) and uncontrolled cases, Ra = 2.4 x 10°.
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Fig. 20. Distribution of the vertical component of the velocity
as a function of x for z=3/4 for controlled (G = 370) and
uncontrolled cases, Ra = 2.4 x 10°.
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Fig. 21. Time evolution of the vertical velocity component at
x=0.18, z=0.718. Control strategy is applied at = 7.4,
Ra=24x10°, G=370.
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also indicates the complete success of the control pro-
cedure. The velocity varies with time until ¢z = 7.41,
when the feedback control is applied to the system. After
a short response time (less than 10% of time constant of
the system), the velocity component is completely sup-
pressed and remains so thereafter.

In summary, for the high Rayleigh number case the
feedback control has been shown to be effective in sup-
pressing the convective cells, returning the fluid to a
motionless state and restoring the temperature profile to
the conductive mode. These observations are similar to
the low Rayleigh number case. However, the effects are
more spectacular in the high Rayleigh number case since
the velocities are 1000 times greater and the temperature
deviation from conductive state is 100 times larger than
in the low Rayleigh number case.

In Fig. 18(b) some vorticity zones persist even after
the application of the feedback control. This is due to
boundary effects, whose vorticity values are much less
than the mean vorticity (1%) in the uncontrolled con-
ditions.

5. Conclusions

Through a linear stability analysis we have estab-
lished the critical Rayleigh number for a fluid layer be-
tween two isothermal planes and subjected to an internal
dissipation of heat. We have chosen a control strategy
aimed at delaying the appearance of natural convection
and have proven its theoretical efficiency through an
stability analysis.

A numerical study has given us the opportunity to
corroborate the results theoretically established con-
cerning the uncontrolled value of the critical Rayleigh
number. Our numerical simulation of the control loop
has proven to be completely satisfactory.
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